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Abstract 

We propose a method to analyze interval-censored data using a multiple imputation based on a Heteroskedastic 

Interval regression approach. The proposed model aims to obtain a synthetic dataset that can be used for standard 

analysis, including standard linear regression, quantile regression, or poverty and inequality estimation. We present 

two applications to show the performance of our method. First, we run a Monte Carlo simulation to show the method's 

performance under the assumption of multiplicative heteroskedasticity, with and without conditional normality. 

Second, we use the proposed methodology to analyze labor income data in Grenada for 2013-2020, where the salary 

data are interval-censored according to the salary intervals prespecified in the survey questionnaire. The results 

obtained are consistent across both exercises. 
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1. Introduction 

Labor force surveys are a useful data source for understanding employment dynamics in both developing and 

developed countries. These surveys provide vast information on the labor market status at higher frequency levels 

than living condition surveys. And, in some cases, they are the only source of information to describe and examine 

the structure of the labor markets. In fact, in the Latin American and the Caribbean region, countries like Bolivia, 

Chile, Costa Rica, Ecuador, Jamaica, Mexico, Peru, and Uruguay, collect their labor force surveys quarterly as 

opposed to a yearly basis, which is the case of most household and living standard surveys.  

 

One of the key features of these labor surveys is that they provide information on wages and salaries of workers. This 

allows us to estimate job market trends and obtain inequality measures of labor income among workers. However, the 

full income distribution in many countries cannot be retrieved because labor income is reported in brackets. Because 

of this, the estimation of inequality or poverty measures, as well as regression-type analysis, is difficult. This is the 

case of the labor force survey for all countries in the Organization of Eastern Caribbean States (OECS).  

 

This is not unique to the Caribbean region. Countries like Colombia, Germany, Australia, New Zealand, Bosnia and 

Herzegovina, North Macedonia, and Serbia, among others, have similar data collection protocols for their microcensus 

(Walter & Weimer, 2018). In the U.S., the current population survey (CPS) collects detailed family income only once 

a year, in the March supplement, but collects family income in brackets on monthly basis.  

One argument in favor of using interval-censored questions to collect information on income is the higher response 

rate compare to questions asking to report exact amounts (Wang et al., 2013). This happens because income 

information is considered "sensitive", and people are reluctant to report actual earnings, and may choose not to respond 

those questions at all (Hagenaars & de Vos, 1988; Moore et al., 2000). Field tests conducted in the past have shown 

that asking follow-up income questions in a series of unfolding brackets achieves superior results in terms of response 

rates for income amounts, as was the case of the National Health Interview Survey (NHIS) and the Behavioral Risk 

Factor Surveillance System Survey (BRFSS), both administered by the Center for Disease Control and Prevention of 

the United States (Angelov & Ekström, 2019; Yan et al., 2018). However, even though this form of data collection 

reduces the severity of underreporting or misreporting, it raises a problem for recovering the full wage (income) 

distribution, which is key to understanding and analyzing inequality.  

To better use the information from these types of surveys, we propose an imputation approach to simulate the 

distribution of the data that is only available in brackets. Our method is an extension of the imputation approach 

described in Royston (2007), that allows for heteroskedastic errors to model the conditional distribution of the 

censored data. The estimated conditional distribution is then used to impute the data using draws from the estimated 

conditional distribution. Once the imputed data is obtained, standard aggregation methods (Rubin, 1987) can be used 

to analyze the censored data as if it were fully observed. For example, it can be used to calculate poverty or inequality 



 

2 

 

measures, as well as perform regression analysis. To demonstrate the flexibility of this approach, we use a Monte 

Carlo simulation to analyze the sensitivity of our method. As an empirical example, we use the approach to analyze 

wage inequality in Grenada utilizing their Labor Force Survey. 

Other approaches exist in the literature and have been used for analyzing this kind of data. Royston (2007), which our 

paper expands upon, proposes and implements a strategy for using interval regression under homoskedasticity in the 

framework of multiple imputation. In contrast, our implementation is more general, as it considers the case of 

heteroskedastic errors, allowing for a better approximation of the conditional distribution and imputation of the 

outcome. 

 

To measure income inequality with right-censored (top-coded) data, Jenkins et al. (2011) propose multiple-imputation 

methods for estimation and inference where censored observations are imputed using draws from a flexible parametric 

model fitted to the censored distribution, such as Generalized Beta of the second kind (GB2), Sigh-Maddala or Dagum 

distributions. Chen (2018) provides a generalized approach for the estimation of parametric income distributions using 

grouped data, showing its consistency through complementary simulation results. More recently, Walter and Weimer 

(2018) propose an iterative kernel density algorithm that generates pseudo samples from the interval-censored income 

variable to estimate poverty and inequality indicators. While the interval regression approach we propose fits with the 

models described in Chen (2018), Jenkins et al. (2011), and Walter and Weimer (Walter & Weimer, 2018), these 

papers focus on recovering the unconditional distribution of income, without considering the relationship with 

explanatory variables. The advantage of using multiple imputed data as we propose is that one can just as easily 

analyze unconditional statistics, as well as analyze data by subgroups or use regression analysis to capture relationships 

between controls and the outcome of interest. 

 

Zhou et al. (2017) and Hsu, et al. (2021) propose methodologies for the estimation of conditional quantile regressions 

using interval censored data, under different distributional assumptions. While these approaches can be used for 

analyzing interval-censored data, they only focus on estimating conditional quantile regressions, requiring specialized 

software that is not readily available. In contrast, the method we propose can be applied not only for the estimation of 

conditional quantile regressions, but also for the estimation of unconditional distribution statistics. 

 

Other studies, like the one proposed by Han et al., (2020), construct new measures of income distribution and estimate 

poverty in the U.S. using data from the monthly Current Population Survey (CPS). They address the problem of 

censored income data using draws from the empirical income distribution observed in the last March supplement. A 

similar method is proposed by Parolin & Wimer (2020), who produce monthly updates of the Supplemental Poverty 

Measure (SPM) rates with demographic data from the CPS and poverty data from the previous March supplement of 

the CPS. However, these studies seek to obtain income estimates using the uncensored distribution of previous years, 

which is not always available with other data sources, like the ones analyzed in this paper.  
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Büttner & Rässler (2008) proposes a multiple imputation approach, similar to ours, to analyze wages from the German 

Institute of Employment Research (IAB) employment survey. While their method focuses on the analysis top coded 

data, we expand the approach to analyze data with a more generalized censoring structure. 

The paper is organized as follows. Section 2 introduces the model and the econometric issues associated with the 

imputation method; Section 3 provides a Monte Carlo simulation exercise to analyze the performance of the 

methodology; Section 4 discusses further considerations regarding the methodology, modeling, and limitations; 

Section 5 uses the methodology to analyze labor income distribution changes in Grenada using the 2013-2020 series 

of the Labor Force Survey. Section 6 concludes. 

2. Methodology 

To address the problem of interval-censored data, we propose a multiple imputation approach based on a 

heteroskedastic interval regression model. Allowing for heteroskedastic errors provides better flexibility for the 

modeling of the conditional distribution of the outcome, which allows for better imputation. An interval-regression 

model is a generalization of the Tobit model that allows the use of a mixture of censored and completely observed 

data, even if the censoring thresholds are unique to each individual. The goal of the model is to find a set of parameters 

that maximizes the probability that, given a set of characteristics, the predicted latent earnings fall within the declared 

earning threshold. Imputations are obtained using random draws of the estimated conditional distributions. In a 

framework of heteroskedastic errors, the methodology uses the estimates for the conditional mean and conditional 

variance to obtain simulated errors and impute the data. To facilitate the description of the methodology, we refer to 

𝑦 as the log of earned income. 

2.1. Interval regression model  

Assume that (log) earned income (𝑦𝑖) has a data-generating process (d.g.p.) such that: 

𝑦𝑖 = 𝜇(𝑥𝑖) + 𝑣𝑖𝜎(𝑥𝑖) (1) 

Where 𝑣𝑖 is a homoskedastic i.i.d. error, with mean 0 and standard deviation 1, that is independent of the characteristics 

𝑥. 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are flexible functions of 𝑥𝑖. 𝜇(𝑥𝑖) represents the conditional mean of 𝑦𝑖 , and 𝜎(𝑥𝑖) is a strictly 

positive function that represents the conditional standard deviation of 𝑦𝑖. Assuming heteroskedastic standard errors, 

based on a multiplicative structure, provides a more flexible framework to model the potentially more complex 

unconditional distribution of 𝑦. 

Following Machado & Santos Silva (2019), the conditional mean 𝜇(𝑥𝑖) captures location shift effects of characteristics 

on the outcome, whereas 𝜎(𝑥𝑖) capture the scale shits, which relates to how much of the spread is explained by 
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differences in characteristics. Following the standard setup of interval-regression models (Stewart, 1983), we impose 

the assumption that 𝑣𝑖 follows a standard normal distribution, so that 𝑦𝑖|𝑥𝑖 is also normally distributed with mean 

𝜇(𝑥𝑖) and standard deviation 𝜎(𝑥𝑖). 2 

𝑖𝑓 𝑣𝑖~𝑁(0,1) → 𝑦𝑖|𝑥𝑖~𝑁(𝜇(𝑥), 𝜎(𝑥)) (2) 

Under this assumption, equation 1 can be estimated via maximum likelihood by maximizing the following function: 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = 𝑓𝑦|𝑥(𝜇(𝑥), 𝜎(𝑥)) =
1

𝜎(𝑥)
𝜙 (

𝑦𝑖 − 𝜇(𝑥)

𝜎(𝑥)
) (3a) 

𝜇̂(𝑥), 𝜎̂(𝑥) = max
𝜇(𝑥),𝜎(𝑥)

1

𝑁
∑ log(𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) (3b) 

Where 𝜇̂(𝑥) and 𝜎̂(𝑥) are the solutions that maximize the log-likelihood function. 

Under these conditions, and assuming a flexible enough model specification to capture the conditional mean and 

conditional variance, estimating equation (1) allows us to recover the whole distribution of the dependent variable 𝑦𝑖 .  

When 𝑦𝑖  is fully observed, this variable can be directly used for estimating any measure of poverty or inequality, or 

to analyze the relationship between observed characteristics 𝑋 and the outcome 𝑦, using standard statistical methods. 

Often, however, due to survey design, one may only have access to data reported in brackets. In other words, rather 

than observing 𝑦𝑖 , one may only observe that reported income by individual  𝑖 is within some lower (𝑙𝑙𝑖) and upper 

(𝑢𝑢𝑖) threshold, which may be different for each individual. In this case, unless 𝑙𝑙𝑖 = 𝑢𝑢𝑖, the likelihood function 

defined by Equations 3a and 3b is not defined.  

An alternative for estimating a model with this type of data is the use of what is known as interval regression. Interval 

regression is a generalization of the censored regression estimators like the Tobit model (see Cameron & Trivedi 

(2005) ch 16 for a discussion of censored regressions), where data can be a mixture of left-censored, right-censored, 

interval-censored, or fully observed. For simplicity, we refer to the case with interval-censored data.   

When the data is interval-censored, rather than modeling the outcome itself, the approach focuses on modeling the 

probability that an individual 𝑖 reports income to be within the underlying income brackets: 

 

2 While this assumption is unnecessary for the estimation of standard linear regression models, imposing some 

distribution assumption on the errors is necessary when estimating models via maximum likelihood. Nevertheless, 

as described in McDonald et al., (2018), it is possible to relax this assumption using more flexible distributions. 
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𝑃(𝑙𝑙𝑖 ≤ 𝑦𝑖 < 𝑢𝑢𝑖|𝑥𝑖) (4) 

Using the data generating process (d.g.p.) defined by equation 1, and the normality assumption of the error 𝑣𝑖, equation 

(4) can be rewritten as: 

𝑃 (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
≤ 𝑣𝑖  <

𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
|𝑥𝑖) = P (𝑣𝑖  <

𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − P (𝑣𝑖  <

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) (5𝑎) 

= Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − Φ (

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) (5𝑏) 

Where Φ(. ) is the cumulative normal density function. Using equation (5b), the loglikelihood function that is 

maximized to identify the parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) is defined as: 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − Φ (

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is interval − censored (6a) 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is left −  censored (6b) 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = 1 − Φ (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is right − censored (6c) 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) =
1

𝜎(𝑥𝑖)
ϕ (

𝑦𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is fully observed (6d) 

Which can be used to obtain estimates for 𝜇(𝑥) and 𝜎(𝑥) using maximum likelihood estimation. 

2.2. Model Imputation.  

As previously described, when dealing with interval-censored data, we have limited access to the observed distribution 

of the variable of interest. This is in contrast with standard multiple imputation analysis, where the variable of interest 

is fully unobserved. This distinction has implications for the imputation strategy because it determines the appropriate 

draw of the imputed error. 

Consider the d.g.p stated in equation 1 and define 𝑦𝑖
∗ to be the true but unobserved variable of interest. By definition, 

if the data is interval-censored, the range of values that can be potentially used to impute 𝑦𝑖
∗ are bounded between the 

lower and upper threshold of a given interval. In addition, conditional on the observed characteristics 𝑥, and the 

parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖), it implies that the unobserved error 𝑣𝑖
∗ is also bounded: 
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𝑣𝑖
∗ ∈ [

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
,
𝑢𝑢i − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
] (7) 

Furthermore, under the assumption that 𝑣𝑖 follows a standard normal distribution, we can impute values for 𝑦𝑖
∗, by 

simply getting random draws for 𝑣𝑖
∗ from a truncated random normal distribution: 

𝑣̃𝑖 = Φ−1(𝑟𝑖), where 𝑟𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Φ (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) , Φ (

𝑢𝑢i − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)) (8) 

Where Φ−1(𝑟𝑖) corresponds to the 𝑟𝑡ℎ quantile for the standard normal distribution. Finally, the imputed value for the 

outcome of interest 𝑦𝑖
∗ is given by: 

𝑦̃𝑖 =  𝜇(𝑥𝑖) + 𝑣̃𝑖𝜎(𝑥𝑖) (9) 

Because the population parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are unknown, we use the sample equivalents that are estimated 

using the interval regression estimator via Maximum likelihood.3 To account for the uncertainty of the regression 

estimation, we obtain random draws from the following joint normal distribution: 

[
𝜇̃(𝑥)

𝜎̃(𝑥)
] ~𝑁 (

𝜇̂(𝑥)

 𝜎̂(𝑥)
, Ω̃) ;   Ω̃ = Ω̂ ∗

𝑛

𝑛̃
; 𝑛̃~𝜒𝑛

2 (10) 

Where Ω̂ is the ML variance-covariance matrix estimate, 𝑛 is the number of observations in the sample, and  𝑛̃ is a 

random draw from a chi-squared distribution 𝑛 degrees of freedom (𝜒𝑛
2). In Royston (2007), and the current 

implementation in -Stata-, the imputation algorithms assume 𝜎̂(𝑥) is constant. This simplifies the draws we need to 

obtain in equation 10 but imposes a homoskedastic assumption on the conditional distribution of 𝑦. . Finally, the 

imputation for 𝑦𝑖
∗ will be given by: 

𝑦̃̃𝑖 = 𝜇̃(𝑥𝑖) + 𝑣̃̃𝑖𝜎̃(𝑥𝑖) (11𝑎) 

𝑣̃̃𝑖 = Φ−1(𝑟̃𝑖), where 𝑟𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Φ (
𝑙𝑙𝑖 − 𝜇̃(𝑥𝑖)

𝜎̃(𝑥𝑖)
) , Φ (

𝑢𝑢𝑖 − 𝜇̃(𝑥𝑖)

𝜎̃(𝑥𝑖)
)) (11𝑏) 

 

Where 𝑣̃̃𝑖 is used in (11a) instead of 𝑣̃𝑖, to account for the role of the estimated parameters in the error 𝑣̃. 

 

3 For numerical purposes, it is also important to emphasize that 𝜎(𝑥𝑖) is not estimated directly, but ln 𝜎(𝑥𝑖) is 

estimated instead.  
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In summary, the imputation algorithm is as follows: 

1. Estimate the parameters associated with 𝜇(𝑥) and 𝜎(𝑥) using a heteroskedastic interval regression approach 

via maximum likelihood, as well as the variance-covariance matrix Ω. 

2. Obtain 𝑛̃ from a random draw from 𝜒𝑛
2, and estimate Ω̃. 

3. Obtain a random draw for 𝜇̃(𝑥) and 𝜎̃(𝑥) from 𝑁 (
𝜇̂(𝑥)

 𝜎̂(𝑥)
, Ω̃). 

4. Obtain random draws for 𝑣̃̃𝑖, conditional on 𝜇̃(𝑥) and 𝜎̃(𝑥), for each observation 𝑖. 

5. Get the full sample of imputed data 𝑦̃̃𝑖. 

6. Repeat steps 2-4 M times and obtain M sets of imputed samples.  

Steps 2-4 correspond to simulating data from the posterior distribution, similar to what is described in  Gelman et al., 

(2014).  

 

After the M imputations have been obtained, one could use the imputed values 𝑦̃̃𝑖, or any other monotonic 

transformation 𝑔(𝑦̃̃𝑖), for further analysis. In most cases, we may be more interested in analyzing outcomes in levels 

but may have to model and impute log of the outcome, because the latter will be more likely to fulfill the conditional 

normality assumption.  

2.3. Model estimation and inference 

Once the M imputed datasets have been obtained, statistical analysis can be done by independently implementing the 

desired model estimation across all M imputed samples. The aggregation and summary from the M estimated models 

could then be done by applying the combination rules described in Rubin (1987).  

Let 𝛽 be the set of parameters of interest, and 𝛽̂𝑚 and 𝑉̂𝑚 be the set of estimated coefficients and corresponding 

variance-covariance matrix obtained using simulated sample 𝑚. The Multiple imputation estimates 𝛽̂𝑀 for the 

parameter of interest is given by: 

𝛽̂𝑀 =
1

𝑀
∑ 𝛽̂𝑚

𝑀

𝑚=1

(13) 

Whereas the variance-covariance estimate 𝑉̂𝑀 is given by: 

𝑉̂𝑀 =
1

𝑀
∑ 𝑉𝑚

𝑀

𝑚=1

+ (
𝑀 + 1

𝑀
)

(𝛽̂𝑚 − 𝛽̂𝑀)′(𝛽̂𝑚 − 𝛽̂𝑀)

𝑀 − 1
  (14) 

3. Monte Carlo Simulations  
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3.1. Setup 

We examine the performance of our proposed estimator under several simulation scenarios, using data 

structures with explicit multiplicative heteroskedasticity, similar to the ones proposed in Machado and Santos-Silva 

(2019), and with a varying coefficient model structure, as in Hsu et al., (2021). In both cases, the goal is to simulate 

data that would show heterogeneity in the distribution of the outcome. This structure is flexible enough to also allow 

the estimation of other distribution-based regressions such as unconditional quantile regressions (Firpo et al., 2009) 

and Recentered Influence function regressions in general (Rios-Avila, 2020).  

The first set of simulations is designed to study the performance of the estimator under the assumption of 

multiplicative heteroskedasticity assuming the following functional form: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑣𝜎(𝑥1, 𝑥2) (15) 

Where 𝑥1 follows a Bernoulli distribution (𝑥1~𝑏𝑒𝑟𝑛𝑢𝑙𝑙𝑖(0.5))and 𝑥2 follows a rescaled chi-squared 

distribution with 5 degrees of freedom (𝑥2~𝜒5
2/5). Following Machado and Santos-Silva (2019), we use two different 

functional forms for 𝜎(𝑥1, 𝑥2): 

𝜎1(𝑥1, 𝑥2) = 𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 (16𝑎) 

𝜎2(𝑥1, 𝑥2) = 𝑒𝛾0+𝛾1𝑥1+𝛾2𝑥2 (16𝑏) 

In both cases, we require that 𝜎(𝑥1, 𝑥2) to be strictly positive. The first case, equation (16a), imposes the 

assumption of linear heteroskedasticity and provides a closed-form solution for the corresponding quantile 

coefficients. The second option, equation (16b), guarantees standard deviation to be strictly positive but does not have 

a closed-form solution for the corresponding conditional quantile regression coefficients. As described in Machado 

and Santos-Silva (2019), this data-generating process of multiplicative heteroskedasticity also guarantees that 

quantiles will not cross, and thus the corresponding coefficients can be estimated directly using standard conditional 

quantile regression estimators. 

Using this data structure, we consider four different distributions for the error 𝑣: Normal distribution, logistic 

distribution, chi-square distribution with 5 degrees of freedom, and uniform distribution. All of them were adjusted to 

have a mean 0 and standard deviation 1. Whereas the first two distributions are meant to show how sensitive is the 

estimator to the normality assumption, the third and fourth aim to show how sensitive the results are to cases where 

the error has a skewed distribution, or a distribution with a limited range. With these considerations, the data-

generating process are defined as: 

𝑦 = 𝑥1 + 𝑥2 + 𝑣 ∗ (1 − 0.5𝑥1 + 0.2𝑥2) (17𝑎) 
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𝑦 = 𝑥1 + 𝑥2 + 𝑣 ∗ 𝑒0.6−0.5+0.2𝑥2 (17𝑏) 

The second set of simulations uses a data-generating process following a varying coefficient approach, based 

on the percentile 𝜏 an observation belongs to. In this setup, we assume that 𝜏 is defined by a random draw from a 

uniform distribution and that 𝑦 is given by: 

𝑦 = 𝛽0(𝜏) + 𝛽1(𝜏)𝑥1 + 𝛽2(𝜏)𝑥2 (18) 

To compare the results to Hsu, et al. (2021), we assume the coefficients 𝛽(𝜏)′𝑠 are defined as: 

𝛽0(𝜏) = 1 + 0.5Φ−1(𝜏); 𝛽1(𝜏) = 0.4 + 1.2Φ−1(𝜏); 𝛽2(𝜏) = 0.6 + 0.5Φ−1(𝜏) (19𝑎) 

𝛽0(𝜏) = 𝛽1(𝜏) = 𝛽2(𝜏) = 0.5(1 + Φ−1(𝜏) − log(1 − 𝜏)) (19𝑏) 

Equation (19a) imposes a structure that is similar to the multiplicative normality under linear 

heteroskedasticity (equation 17a), whereas the second equation imposes a skew conditional distribution of the 

outcome. This d.g.p. allows us to present a more general  

In all scenarios, we assume that data is subject to interval censoring, such that 𝑙𝑙𝑖 = ⌊𝑦𝑖⌋  & 𝑢𝑢𝑖 = ⌈𝑦𝑖⌉, where 

⌊. ⌋ and ⌈. ⌉ represent the nearest integer that is lower or higher than 𝑦𝑖  respectively. In addition, we also assume if 𝑦𝑖 <

−1 or 𝑦𝑖 > 10, the lower and upper thresholds, respectively, will be undefined. These steps are not necessary, but 

allow us to mimic how would data be accessible when bracket bounds are adjusted and transformed (log). 

For the implementation and analysis, we use 2500 replications, with a sample size of 1000 observations for 

the core results. Replications using sample sizes of 500 and 2000 are provided in the appendix, with qualitatively 

similar results. We focus on the comparison of conditional quantile regressions for the 10th, 50th, and 90th quantiles, as 

well as for the 10th, 50th, and 90th unconditional quantiles. Quantile regressions were estimated using the fast algorithm 

developed by Chernozhukov et al. (2022) and implemented via the Stata command -qrprocess-, whereas the 

unconditional quantile regressions were estimated following Firpo, Fortin, and Lemieux (2009) and implanted via the 

Stata command -rifhdreg- (Rios-Avila, 2020). Finally, the simulation was implemented using -parallel- (Vega Yon & 

Quistorff, 2019). Finally, our imputation method is implanted with a new user-written program -intreg_mi-, which is 

available upon request. 

While population parameters for conditional quantile regressions exist for some of the data-generating 

processes, there are no close-form solutions for the population parameters corresponding to the RIF regressions. 

Because of this, our comparisons and evaluations assume the estimates using fully observed data to be the truth, which 

are compared to coefficients based on simulated data. 

3.2. Results 
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Tables 1 to 3 provide a summary of the results for the Montecarlo simulations using the different data-

generating processes. In each table, we present the bias of the estimates, comparing the imputation-based estimated 

coefficients to the coefficients obtained using fully observed data. We also present the mean squared error (MAE) 

associated with the bias, and provide the Standard error ratio. The latter shows how much larger the standard error of 

the estimated coefficients using the imputed data is, compared to the coefficients based on fully observed data.  

Based on the results in Table 1 and Table 2, when the error 𝑣 is assumed to follow a normal or a logistic 

distribution (upper panel), the bias observed for the conditional and unconditional quantile regressions (column 2 of 

each subpanel) is negligible. In Table 1, when the error 𝑣 is normally distributed, the largest bias is observed for the 

quantile regressions at the bottom of the distribution. Instead, if the errors follow a logistic distribution, the bias is 

somewhat larger, with the largest bias at 0.03. While this bias does not disappear with larger samples (see appendix), 

is relatively small compared to the expected coefficient. In Table 2, when the multiplicative heteroskedasticity depends 

on an exponential function, the bias when 𝑣 follows a logistic distribution is smaller, but still present. 

 We also observe that the aggregated imputation-based standard errors are between 5 to 29 percent larger 

than those based on fully observed data. This is expected given the information loss due to the nature of the interval-

censored data. Additional simulations (see appendix) suggest that larger sample sizes have no impact on the precision 

of using imputation-based estimates. 

It is interesting to note that when the d.g.p. follows the linear heteroskedastic form, the coefficients associated 

with conditional and unconditional quantile regressions have similar levels of precision loss (based on the Standard 

errors ratio) and are similarly close to the coefficients based on fully observed data (based on MAE). When the d.g.p. 

assumes an exponential function for heteroskedasticity, the precision loss when estimating unconditional quantile 

regression is almost double that in the former case.  

When the errors 𝑣 follow a chi2 distribution or uniform distribution (lower panel in tables 1 and 2), we 

observe nonnegligible bias, especially for the lower quantile coefficients.4 For example, when considering the 10th 

conditional quantile coefficient, we see a bias of 0.321, almost 30% of the coefficient magnitude. Although the 

magnitude of the bias is smaller if the data-generating process imposes a functional form with exponential 

heteroskedasticity (see Table 2), the magnitude of the bias remains high (up to 0.07 for the unconditional quantile 

case). Based on further simulations with different sample sizes (see appendix), we observe that the bias magnitude 

 

4 It may be possible that the location of the bias is explained by features in the data generating process. 
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does not depend on the sample size, but instead depends strongly on the correct model specification. As we show later 

in section 4.1 however, further improvements could be obtained with a larger number of brackets. 

In Table 3, we show results based on a data-generating process that follows a varying coefficient structure. 

A varying coefficient model structure is usually considered a more flexible characterization of quantile regressions, 

compared to models with heteroskedastic errors. For the two specifications we use in our simulations, the Montecarlo 

simulations suggest there is also a small bias across all coefficients, with similar performance to the case with 

exponential heteroskedasticity. 

A different approach to evaluating the quality of the imputation is analyzing the dispersion of the difference 

between the estimated coefficients obtained using the fully observed data, and the ones obtained using the imputed 

data. We do this using the mean absolute error (MAE), where the error is defined as the difference between estimated 

coefficients. In absolute terms, we see that the imputation-based coefficients are better at replicating the fully observed 

coefficients when considering the middle of the distribution (50th conditional and unconditional quantiles). As can be 

observed in Table 1, the MAE for the 50th quantile regressions is almost half of that for the 10th quantile, and about 10 

to 20% smaller than the 90th percentile. Differences in MAE across quantiles and distribution assumptions of 𝑣 are 

much smaller when considering the specification results in Table 2, or when considering the varying coefficient 

structure of Table 3. 

Considering the role of sample sizes, if the assumptions of the imputation model hold, and the bias is small, 

increasing the sample size improves the overall quality of the imputation-based estimates. Based on the simulations 

in the appendix, doubling the sample size reduces the MAE between 20% to 30%. When the estimated coefficients 

are severely biased, we see only minor changes in MAE (compare Table 1 with Appendix A4). 

Table 1. Monte Carlo Simulation: N=1000, Linear Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 2.011 0.008 0.099 23.540 1.955 -0.030 0.102 15.581 

x2 0.798 0.002 0.061 15.471 0.803 -0.006 0.063 13.418 

cons -2.381 -0.008 0.125 29.196 -2.247 0.022 0.128 20.698 

CQR-Q50 

x1 1.000 0.001 0.045 6.955 1.003 -0.001 0.042 8.644 

x2 1.001 -0.002 0.036 7.149 0.997 -0.001 0.033 8.822 

cons -0.001 0.002 0.049 7.165 -0.002 0.002 0.047 8.790 

CQR-Q90 

x1 -0.009 0.000 0.064 10.306 0.041 0.005 0.066 9.622 

x2 1.199 0.001 0.051 10.964 1.191 0.000 0.054 10.869 

cons 2.383 -0.001 0.071 9.881 2.252 0.007 0.074 9.530 

UQR-Q10 

x1 2.097 0.008 0.102 15.906 1.915 -0.021 0.099 11.408 

x2 0.611 0.001 0.046 6.041 0.602 -0.008 0.052 4.672 

cons -2.537 -0.006 0.095 12.972 -2.342 0.016 0.100 10.820 

UQR-Q50 
x1 1.006 0.000 0.057 13.020 1.026 -0.007 0.056 15.928 

x2 0.929 0.000 0.041 11.030 0.919 -0.002 0.040 12.792 



 

12 

 

cons 0.131 0.001 0.059 12.181 0.120 0.004 0.055 13.987 

UQR-Q90 

x1 0.052 -0.001 0.067 10.256 0.106 0.004 0.072 10.773 

x2 1.466 0.001 0.074 19.167 1.492 -0.004 0.084 21.324 

cons 2.263 -0.001 0.079 12.912 2.134 0.010 0.088 13.397 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.848 0.321 0.321 91.549 2.094 0.258 0.260 68.957 

x2 0.831 0.123 0.123 37.703 0.786 0.052 0.068 29.649 

cons -1.989 -0.471 0.471 103.460 -2.572 -0.264 0.270 74.863 

CQR-Q50 

x1 1.168 0.020 0.044 9.368 0.996 0.004 0.053 4.313 

x2 0.969 0.000 0.032 8.434 0.999 0.001 0.042 4.050 

cons -0.385 0.023 0.047 9.570 0.005 -0.005 0.058 4.468 

CQR-Q90 

x1 -0.051 -0.011 0.080 4.794 -0.097 -0.008 0.053 14.553 

x2 1.215 -0.004 0.065 4.700 1.216 -0.001 0.040 14.464 

cons 2.486 -0.003 0.086 4.646 2.573 -0.042 0.066 14.118 

UQR-Q10 

x1 1.840 0.188 0.194 28.691 2.539 0.236 0.268 45.933 

x2 0.684 0.079 0.088 25.193 0.651 0.027 0.063 19.107 

cons -2.370 -0.174 0.185 33.232 -3.046 -0.163 0.198 40.143 

UQR-Q50 

x1 1.165 0.039 0.062 16.087 0.945 0.012 0.060 6.623 

x2 0.945 0.000 0.037 14.438 0.921 0.007 0.045 6.169 

cons -0.199 0.020 0.052 13.652 0.190 -0.004 0.064 7.339 

UQR-Q90 

x1 0.014 -0.004 0.068 3.359 -0.003 -0.004 0.059 16.617 

x2 1.455 -0.004 0.089 11.090 1.484 -0.015 0.060 23.134 

cons 2.369 0.000 0.097 6.799 2.314 0.010 0.065 17.632 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. StErr 

ratio represents how much larger the Std error of the coefficients is using imputed data, compared to the fully observed 

data.  CQR: Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

Table 2 Monte Carlo Simulation: N=1000, exponential Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝑒𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.639 0.001 0.048 16.840 1.603 0.009 0.050 14.282 

x2 0.743 -0.004 0.040 17.292 0.758 -0.003 0.043 16.214 

cons -1.280 0.003 0.052 15.957 -1.209 0.013 0.056 12.862 

CQR-Q50 

x1 1.000 0.000 0.033 11.537 0.999 0.000 0.032 15.846 

x2 0.999 0.000 0.027 11.436 0.998 0.003 0.026 15.839 

cons 0.000 -0.001 0.038 11.918 0.004 -0.003 0.036 16.176 

CQR-Q90 

x1 0.364 0.002 0.050 17.023 0.392 -0.009 0.050 15.391 

x2 1.255 0.001 0.039 16.242 1.239 0.002 0.040 15.707 

cons 1.279 -0.001 0.055 16.401 1.216 -0.012 0.056 14.733 

UQR-Q10 

x1 1.613 0.002 0.088 25.565 1.478 -0.018 0.085 25.832 

x2 0.582 -0.001 0.044 10.654 0.565 -0.006 0.039 9.973 

cons -1.533 0.001 0.098 27.431 -1.390 0.019 0.089 25.553 

UQR-Q50 

x1 1.003 -0.002 0.047 24.581 1.025 0.015 0.050 27.348 

x2 0.850 -0.001 0.033 18.288 0.853 0.009 0.032 20.023 

cons 0.170 0.000 0.045 20.692 0.152 -0.016 0.047 22.121 
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UQR-Q90 

x1 0.430 0.002 0.040 7.693 0.446 0.006 0.037 5.046 

x2 1.624 0.001 0.087 48.404 1.612 0.024 0.087 43.271 

cons 1.212 -0.002 0.092 32.304 1.190 -0.027 0.094 29.040 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝑒𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.536 0.030 0.043 48.403 1.691 0.012 0.044 31.959 

x2 0.788 -0.018 0.033 46.521 0.726 -0.046 0.053 26.788 

cons -1.072 0.050 0.058 45.635 -1.384 0.008 0.050 34.370 

CQR-Q50 

x1 1.102 -0.025 0.038 15.236 1.001 0.001 0.038 4.488 

x2 0.959 0.009 0.027 15.400 1.002 -0.007 0.033 4.317 

cons -0.204 -0.053 0.058 15.355 0.000 0.008 0.045 4.453 

CQR-Q90 

x1 0.331 0.003 0.060 5.324 0.306 -0.014 0.042 27.005 

x2 1.269 0.007 0.048 3.487 1.274 0.012 0.034 25.265 

cons 1.340 0.010 0.067 4.724 1.386 0.040 0.056 26.647 

UQR-Q10 

x1 1.273 -0.071 0.083 26.493 1.734 0.125 0.130 8.851 

x2 0.648 0.003 0.036 18.002 0.670 0.084 0.088 4.190 

cons -1.417 0.042 0.081 34.823 -1.843 -0.200 0.203 16.747 

UQR-Q50 

x1 1.099 -0.037 0.056 28.393 0.922 -0.072 0.079 18.122 

x2 0.860 0.031 0.041 21.901 0.839 -0.042 0.050 13.941 

cons 0.023 -0.059 0.067 23.301 0.245 0.077 0.085 18.233 

UQR-Q90 

x1 0.383 0.020 0.049 0.030 0.429 -0.009 0.040 12.949 

x2 1.585 0.064 0.113 29.469 1.630 -0.041 0.088 55.819 

cons 1.305 -0.066 0.117 16.299 1.217 0.043 0.093 37.680 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. StErr 

ratio represents how much larger the Std error of the coefficients is using imputed data, compared to the fully observed 

data.  CQR: Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

Table 3 Monte Carlo Simulation: N=1000, Varying coefficient structure 

𝑦 = 𝑥𝛽(𝑡) 

Type 1 Type 2 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 -1.140 0.000 0.064 10.331 -0.092 -0.011 0.061 15.394 

x2 -0.035 -0.010 0.054 12.024 -0.086 -0.010 0.053 15.588 

cons 0.356 0.010 0.061 18.218 -0.086 0.043 0.066 16.975 

CQR-Q50 

x1 0.404 0.002 0.043 6.726 0.845 0.009 0.051 5.568 

x2 0.601 0.001 0.033 6.521 0.841 0.004 0.042 4.454 

cons 0.998 -0.003 0.037 8.535 0.853 -0.029 0.053 5.877 

CQR-Q90 

x1 1.938 -0.001 0.063 9.790 2.282 0.001 0.095 4.465 

x2 1.236 0.005 0.051 9.840 2.280 0.010 0.108 5.448 

cons 1.644 -0.004 0.053 13.852 2.309 0.002 0.105 7.259 

UQR-Q10 

x1 -1.211 -0.002 0.085 17.009 -0.097 -0.018 0.061 17.379 

x2 -0.044 -0.002 0.042 7.209 -0.078 -0.012 0.044 15.686 

cons 0.482 0.004 0.054 6.569 -0.074 0.056 0.075 16.203 

UQR-Q50 

x1 0.418 0.003 0.046 11.851 0.900 0.008 0.036 3.104 

x2 0.535 0.003 0.036 11.204 0.737 0.005 0.026 2.576 

cons 0.899 -0.007 0.050 12.403 0.757 -0.017 0.038 2.795 

UQR-Q90 
x1 1.982 -0.001 0.109 15.015 2.214 0.002 0.112 5.050 

x2 1.296 -0.002 0.080 13.614 2.321 -0.001 0.110 7.709 
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cons 1.778 0.003 0.111 14.129 2.499 0.006 0.129 5.711 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. StErr 

ratio represents how much larger the Std error of the coefficients is using imputed data, compared to the fully observed 

data.  CQR: Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

4. Further Considerations 

4.1. On the Role of brackets 

As presented in Section 3, the successful implementation of the methodology we propose depends greatly on the 

model specification assumptions. If the underlying censored data, or some monotonic transformation, has a conditional 

distribution that can be modeled as a normal distribution with multiplicative error structure, the imputation procedure 

would do a good job creating imputed data that resembles the true but unobserved data. Yet, if the assumptions are 

incorrect, we will have a misspecification problem that would generate biases when analyzing the data. 

However, because imputed data is constrained to be within the provided brackets, it is possible to improve the quality 

of the imputed data by using more brackets with narrower limits, even if the assumptions regarding the conditional 

distribution of the outcome are incorrect. In other words, the imputation quality will improve if the width of the 

brackets decreases.  

To see this, we use the structure described by equation (17b), assuming the error 𝑣 follows a normal distribution (case 

1), and a chi2 distribution (case 2). The second case will be equivalent to having a misspecification problem regarding 

the distribution of 𝑣. We assume, however, that the conditional mean and conditional variance models are correctly 

specified. For the bracket’s width, we consider two cases, one where there are 5 equidistant brackets and one with 15 

equidistant brackets. We report the simulation results in Table 4, considering only the estimates for conditional 

quantile regressions. 

Table 4 Monte Carlo Simulation: N=1000, Role of Brackets 

   5 Brackets 15 Brackets 

 𝑣~normal E(𝛽̂𝑓)  Bias MAE Bias MAE 

CQR-Q10 

x1 1.387 0.004 0.083 0.000 0.047 

x2 0.805 -0.001 0.083 0.000 0.037 

cons -1.925 -0.004 0.083 0.000 0.050 

CQR-Q50 

x1 0.999 -0.001 0.051 0.000 0.030 

x2 1.000 -0.001 0.051 -0.001 0.025 

cons 0.001 0.002 0.051 0.001 0.033 

CQR-Q90 
x1 0.620 0.000 0.079 0.000 0.047 

x2 1.195 0.001 0.079 -0.001 0.052 
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cons 1.919 -0.002 0.079 0.000 0.058 

  
E(𝛽̂𝑓)  

5 Brackets 15 Brackets 

 𝑣~Chi2 Bias MAE Bias MAE 

CQR-Q10 

x1 1.321 0.004 0.055 0.002 0.031 

x2 0.836 0.045 0.055 -0.003 0.026 

cons -1.603 -0.003 0.055 0.009 0.034 

CQR-Q50 

x1 1.062 -0.020 0.051 -0.002 0.030 

x2 0.966 0.002 0.051 0.001 0.024 

cons -0.303 -0.076 0.051 -0.012 0.033 

CQR-Q90 

x1 0.604 -0.007 0.099 0.000 0.058 

x2 1.197 0.011 0.099 0.005 0.053 

cons 2.015 0.031 0.099 0.001 0.066 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. CQR: 

Conditional Quantile Regression. 

As can be seen in this table, when the conditional normality assumption holds, the imputation approach produces 

unbiased estimates for the coefficients across all quantiles (10th, 50th, and 90th), regardless of the number of brackets 

considered. However, we also observe that both the bias and the precision of the imputed estimates (measured using 

the MAE) improve considerably when 15  brackets are utilized. In contrast, when the error  𝑣 is assumed to follow a 

Chi2 distribution, instead of a normal distribution, the estimates based on the imputed data show a larger bias. This is 

similar to what we saw before in Tables 1 and 2. Using more brackets reduces the bias and improves the precision of 

the estimates, as seen in the bottom right panel of Table 4. 

4.2. Non-response and Missing Data 

A second aspect of interest is the treatment of survey non-response. Similar to the treatment of missing data elsewhere 

in the literature (see Enders (2022), chp 1) it is necessary to consider why the data is missing. Under the assumption 

of missing at random (MAR), we could use interval regression modeling to correctly identify the conditional 

distribution of the outcome, and impute the outcomes for the censored and the missing data. Alternatively, we could 

also use an inverse probability weighting (IPW) approach to account for sample composition bias. We provide an 

example of applying the full imputation in section 5.  

If data is not missing at random, for example by people self-selecting and refusing to answer the survey, we face a 

problem of misspecification and would be unable to identify the true conditional distribution, instead identifying the 

endogenous sample conditional distribution of the outcome. Smaller brackets would only improve the imputation of 

the censored data, not that of the missing data. This is not dissimilar to the assumptions used in other multiple 

imputation approaches. Addressing problems of missing data missing not at random (MNAR) is beyond the scope of 

this paper. 
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In terms of implementation, the command that implements our strategy imputes the outcomes for all observations in 

the data by default, unless it is requested otherwise. In the example we provide in Section 5, we assume that the non-

response items are missing at random, imputing earnings for those who refuse to report income. We also provide in 

the appendix a robustness check where we address the truly missing data using IPW. 

4.3. Choice of Covariates and Model Overfitting 

Following the literature on imputation (Enders,2022), covariates should be chosen in terms of what factors better 

predict the outcome of interest. When using the approach to impute non-response items, one should also include 

covariates that determine why data was missing. As general advice, the set of covariates used for imputation should 

be at least as extensive as the set used for data modeling. This would help provide a flexible specification for the 

identification of the conditional distribution of the outcome.  

The fewer the covariates available, the more one relies on the identification based on the bracket’s boundaries. In 

contrast, if the number of covariates used in the modeling increases, it may cause problems of overfitting, reducing 

the quality of imputed values of non-response items, because of the increased variation (standard errors) of the 

estimated coefficients. This would result in unbiased estimated coefficients but with potentially larger variation. For 

the case of imputed censored data, because the imputed values depend on the coefficient variation, error variation, and 

brackets limits, the final effect on the quality of the imputed values may be smaller.  

To see this, we run a Monte Carlo simulation using a data structure with multiplicative heteroskedasticity similar to 

Equation 17b, with some differences. First, we consider 3 explanatory variables (𝑥1, 𝑥2 and 𝑥3), all of which follow a 

standard normal distribution. Second, we assume these variables only affect the conditional variance, not the 

conditional mean. For the imputation step, we consider two scenarios based on the number of brackets, combined with 

a scenario where the covariates are excluded from the conditional mean modeling (correct model), and one where they 

are included (overfitting). Results corresponding to the conditional quantile regressions are presented in Table 5. For 

completeness, we also consider a complementary setup, where the covariates affect both the conditional mean and 

variance, but they are not considered for modeling the conditional mean. These results are presented in Table 6 

As we observe in Table 5, because the underlying assumption of normality holds, the bias of the coefficients is 

negligible, regardless of the number of brackets or model specification. Similar to Table 4, we observe that using more 

brackets improves the imputation quality, based on the smaller MAE. Interestingly, by adding unnecessary controls 

to the conditional mean (overfitting), there is a small loss in efficiency (larger MAE). In contrast, when considering 

the problem of underfitting (table 6), we see that ignoring important variables in the model generates a non-negligible 

bias on the estimated coefficients. Nevertheless, as we have shown before, increasing the number of brackets helps 

reduce such bias. 
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Table 5 Monte Carlo Simulation: N=1000, Exact fitting vs Overfitting 

   Exact Fitting Overfitting 

   5 Brackets 15 Brackets 5 Brackets 15 Brackets 

 𝑢~normal E(𝛽̂𝑓)  Bias MAE Bias MAE Bias MAE Bias MAE 

CQR-Q10 

x1 -0.118 0.000 0.026 0.000 0.016 0.000 0.027 0.000 0.016 

x2 0.353 0.000 0.024 0.000 0.014 0.000 0.024 0.000 0.014 

x3 -0.233 0.001 0.026 0.000 0.015 0.001 0.026 0.001 0.015 

cons -0.369 0.000 0.029 0.000 0.017 -0.001 0.029 0.000 0.017 

CQR-Q50 

x1 0.000 0.000 0.021 0.000 0.012 0.000 0.022 0.000 0.012 

x2 0.001 0.000 0.021 0.000 0.012 0.001 0.022 0.000 0.012 

x3 0.000 0.000 0.021 0.000 0.012 0.000 0.022 0.000 0.012 

cons 0.999 0.000 0.024 0.000 0.013 0.000 0.024 0.000 0.013 

CQR-Q90 

x1 0.116 0.000 0.026 -0.001 0.015 0.000 0.027 -0.001 0.016 

x2 -0.351 0.000 0.024 0.000 0.015 0.000 0.024 0.000 0.015 

x3 0.235 0.000 0.025 -0.001 0.015 -0.001 0.025 -0.001 0.015 

cons 2.368 0.002 0.029 0.000 0.017 0.002 0.029 0.000 0.017 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. CQR: 

Conditional Quantile Regression. 

Table 6 Monte Carlo Simulation: N=1000, Exact fitting vs Underfitting 

   Exact Fitting Underfitting 

   5 Brackets 15 Brackets 5 Brackets 15 Brackets 

 𝑢~normal E(𝛽̂𝑓)  Bias MAE Bias MAE Bias MAE Bias MAE 

CQR-Q10 

x1 -1.117 0.001 0.036 0.000 0.022 -0.112 0.112 -0.026 0.031 

x2 1.351 0.000 0.034 0.000 0.021 0.168 0.168 0.036 0.038 

x3 -1.234 -0.001 0.035 0.000 0.021 -0.141 0.141 -0.030 0.034 

cons -0.368 -0.004 0.039 -0.002 0.022 0.290 0.290 0.033 0.037 

CQR-Q50 

x1 -1.001 0.000 0.024 -0.001 0.014 -0.088 0.088 -0.014 0.018 

x2 1.000 -0.001 0.024 0.000 0.014 0.089 0.089 0.014 0.018 

x3 -0.999 0.001 0.024 0.000 0.014 -0.088 0.088 -0.014 0.018 

cons 1.000 0.000 0.026 0.000 0.015 -0.003 0.027 -0.001 0.015 

CQR-Q90 

x1 -0.885 0.000 0.035 0.000 0.021 -0.067 0.070 -0.009 0.023 

x2 0.647 -0.002 0.033 0.000 0.020 0.019 0.038 0.002 0.021 

x3 -0.765 0.001 0.034 0.001 0.021 -0.043 0.051 -0.005 0.022 

cons 2.368 0.003 0.039 0.001 0.022 -0.295 0.295 -0.042 0.044 

Note: Monte Carlo Simulation Results. E(𝛽̂𝑓) represent the average estimated coefficients across all simulations, based 

on uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed 

(MI) data. MAE is the average Mean absolute error (MAE) when comparing MI data and the uncensored data. CQR: 

Conditional Quantile Regression. 
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4.4. General Considerations on Implementation 

As described earlier, there are general considerations one should keep in mind when applying the methodology, 

including variable choice, functional form specification, and data transformations. First, following the literature on 

imputation analysis, the variable choice should consider variables that explain the outcome, allowing for a sufficiently 

flexible model specification for modeling the conditional mean and variance. This may include the use of interactions 

and high-order polynomials. In addition, based on a few examples available in our repository,5 the imputation method 

provides sensible results if the imputation step considers at least all variables used in the analysis step. Although this 

practice may lead to model overfitting, the drawbacks of misspecification errors outweigh the loss of precision derived 

from model overfitting. 

Regarding model misspecification, it is important to consider that the main assumption of the model is that the outcome 

of interest, or some transformation of it, follows a conditionally normal distribution. In the example presented in the 

next section, and the ones available in the online repository, we have used the log transformation as a simple and 

common approach to model the dependent variable. However, similar to the work on small area poverty estimations 

(Corral et al., 2021), one can consider other transformations, including log-shift transformation, Box-Cox 

transformation, or a hyperbolic sine transformation,6 among others, to help fulfill the model assumptions. If the 

conditionally normal distribution assumption is questionable, other methods that deal with interval-censored data as 

described in McDonald et al., (2018) could be applied, and our methodology extended. 

Like most imputation methods in the literature, when there are no response items, our methodology relies on the 

assumption that data is missing at random (MAR). In general, the application of the imputation method becomes 

problematic in scenarios when data is missing not at random (MNAR), i.e., endogenous sample selection. If data is 

MAR, the missing responses could be imputed by combining our methodology with a re-weighting approach as shown 

in section 5. Otherwise, imputation could be done as is, if the covariates used include factors that relate to the 

missingness mechanism. In such cases, where data is MNAR, it may be necessary to use Heckman-type selection 

models or pattern mixture models (Enders, 2011, 2022; C. Hsu et al., 2023; Muñoz et al., 2023), to impute the missing 

information. With sufficiently small brackets, this may not be a problem, however, this is a topic left for further 

research.  

 

5 A set of examples that shows the application and performance of the methodology can be found at 

https://github.com/friosavila/intreg_mi.  

6 We thank an anonymous referee for the suggestion. 

https://github.com/friosavila/intreg_mi
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5. Wage Inequality in Grenada 

This illustration focuses on an empirical application of our proposed method for the case of Grenada, focusing on the 

description of wage inequality trends in the country between 2013 and 2020 using the annual Labor Force Survey 

(LFS). This survey provides is the only source of information that can be used to describe the status of the labor market 

and the distribution of labor income in the country.  

One major limitation of this survey, however, is the collection of labor income data. Compared to standard household 

surveys or labor force surveys in most developed countries, labor income recorded in the LFS in Grenada is only 

available in brackets. Furthermore, there is a large proportion of the employed population who do not declare their 

labor income. Table 7 provides an overview of the labor income distribution across time. 

Table 7 Labor Income distribution by year 

Year 2013 2014 2015 2016 2017 2018 2019 2020 

>200 2.9 0.9 3.7 3.5 1.4 0.2 0.0 0.5 

200-399 7.1 5.5 6.2 5.4 4.1 1.6 1.2 1.2 

400-799 15.1 15.7 12.2 14.2 13.7 9.1 8.3 10.3 

800-1199 19.2 20.2 18.3 18.6 21.1 20.5 23.8 23.7 

1200-1999 17.5 17.3 13.8 13.1 18.4 14.7 14.9 15.8 

2000-3999 15.6 11.4 11.1 11.4 10.5 9.7 12.8 11.1 

4000-5999 2.5 2.5 2.4 2.2 2.2 1.5 1.2 2.2 

6000+ 2.0 1.2 0.6 0.6 0.7 1.0 1.0 0.5 

Not stated 18.1 25.3 31.6 31.1 27.9 41.9 36.7 34.7 

N 1056 1285 1290 1349 1485 1089 858 460 

Note: Censored Data distribution based on Grenada Labour Force Survey, 

In this case, we face two types of problems. On the one hand, we only have access to interval-censored data, which is 

insufficient to analyze changes in the distribution of earnings in the country, and, on the other hand, we have an 

increasing proportion of individuals who do not declare income. We apply the imputation procedure previously 

described to address both problems, estimating the interval-censored regression for each year, with a set of household-

level characteristics and job type characteristics. The sample of interest includes all adults who declared to be 

employed, even if they did not state their income. It should be emphasized that the application of this methodology 

relies on the assumption that nonresponse can be classified as missing at random MAR, and that our modeling accounts 

both for income-determining factors, as well as factors affecting the likelihood of not declaring income. This is a 

simplifying assumption that we use for the exercise, but may not be reliable in other settings.  

To account for the fact that characteristics may differ across those who did or did not state their incomes, an inverse 

probability weighting strategy is used to estimate the interval regression model. Finally, the imputation procedure is 

implemented as discussed in section 3 using the natural logarithm on the bracket limits. Thus, we assume no lower 

and upper bounds for the imputed log wages. Nevertheless, the maximum imputed wage for those who do not state 
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their income is capped at the maximum predicted among those who declare their income, to avoid extreme outliers.7 

Wages and brackets are measured in Eastern Caribbean dollars (XCD),  adjusted by inflation using 2010 as the base 

year. While we impute log wages, we transform the data back to levels to estimate the different statistics shown in 

Figures 1 and 2. 

Figure 1 Average Monthly Earnings by Year and Gender 

 

Note: Average Monthly earnings by year and Gender, based on full imputed data. 90% CI 

Figure 1 shows the average earned income for the total employed population, as well as for men and women separately, 

including  90% confidence intervals. The results suggest that after a small decline in average real monthly earnings 

from 2013 to 2016, there was a slight improvement in the following two years, with a small decline in 2019, with 

average wages remaining at stable levels in 2020, despite the COVID-19 pandemic.8 The results also suggest that the 

gender earnings gap has shown a somewhat increasing trend between 2013 and 2019, although we predict a small 

 

7 In the simulations, maintaining the assumption of no upperbound limit for the imputed values would create some 

unusually large imputations among the non-response items. Because of this, we decide to set limits in the data to 

reduce the possibilities of generating unrealistic imputed datasets. 

8 This estimate does not take into account the decline in labor force participation observed during the pandemic. 
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decline in 2020. In the appendix, we reproduce a similar plot using excluding non-respondents, but utilizing inverse 

probability weight, observing similar conclusions.  

 

Figure 2 Selected Quantiles and Gini Coefficient across Years 

 

Note: Selected Quantiles and Gini coefficients, based on full imputed data. 90% CI 

Figure 2 provides results using selected inequality statistics. The estimates suggest that inequality has declined 

substantially across the years. The estimated Gini coefficient fell from 44.2 Gini points in 2015 to 34.1 in 2019, with 

an increase in 2020. This decline in inequality seems to have been driven by faster growth in the lower and middle 

sections of the wage distribution and a small decline in the upper section of the distribution.  

While such a decline in inequality may seem larger than average, even among other countries in the region, it is 

unlikely that it is driven by features of the imputation procedure. While less evident, the crosstabulation presented in 

Table 7 already suggests a concentration of wages, with an increasing proportion of individuals declaring wages in 

the middle brackets. On the other hand, according to the World Bank Outlook Poverty Report (World Bank, 2020), 

Grenada experienced a steady growth path before the COVID-19 crisis, driven by an expansion of the tourism and 

construction sectors. The expansion of these sectors aligns with the estimated wage increases at the bottom of the 

distribution, as we show in Figure 2. 
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6. Conclusion 

In this paper, we present an imputation strategy that can be used to analyze interval-censored data. Our method 

proposes that a flexible enough interval regression model can be used to impute censored data, which allows to recover 

the full distribution of data and can be further analyzed using standard statistical methods.  

The main limitation of our strategy is the assumption of conditional normality we impose on the distribution, which 

is required for the estimation of the interval regression model using standard software. In fact, we have shown that the 

quality of the imputation depends strongly on the correct model specification of the conditional mean and conditional 

variance. The principles of the imputation approach, however, could be extended to allow for more flexible moment 

specifications, as well as error distributions. A second potential limitation is related to the presence of non-response 

items with endogenous missing data. Following the literature, it may be possible to extend our methodology with other 

strategies that deal with data missing not at random such as the use of reweighted data, as shown in the empirical 

example, or combine it with the use of Heckman selection type models.  

Nevertheless, the Monte Carlo simulation suggests that as long as the latent error has a symmetric bell-shaped 

distribution, regression analysis using the imputed data shows small biases, with performance that is comparable to 

analyzing the uncensored data. Likewise, when the heteroskedasticity structure is given by an exponential function, 

biases are small even when the latent error follows a skew or a limited distribution. Furthermore, even if the imputation 

model is misspecified, multiple imputation could still provide a good approximation for analysis if the width of the 

brackets is narrow. In some cases, it may be the only approach to analyze the data. 

For the specific case of Grenada we only had access to interval-censored data, which is insufficient to analyze changes 

in the distribution of earnings in the country, and, on the other hand, we have an increasing proportion of individuals 

who do not declare income. We apply the imputation procedure to address both problems, under the assumption that 

non-response items follow a missing at-random pattern.  Interval-censored regressions are estimated for each year, 

with a set of household-level characteristics and job-type characteristics, and the estimates used for imputation. The 

results suggest that earned income inequality in this country has declined, which coincides with other economic 

performance indicators, and the growth of the tourism and construction sector.  

While this method aims to provide an imputation approach that facilitates the analysis of interval-censored data, the 

imputation quality will depend on the identification of the conditional distribution of the outcome, or some monotonic 

transformation of it, which is unobserved. However, using imputed data may still provide better estimates and insights 

than not using any imputation at all. 
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Appendix 

Table A1. Monte Carlo Simulation: N=500, Linear Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 2.005 -0.023 0.141 24.935 1.962 0.028 0.142 17.682 

x2 0.808 -0.006 0.090 16.189 0.802 0.004 0.091 14.581 

cons -2.385 0.025 0.183 30.300 -2.251 -0.020 0.182 22.701 

CQR-Q50 

x1 1.003 -0.001 0.063 6.241 0.998 0.001 0.059 7.952 

x2 1.004 0.000 0.050 6.252 0.999 0.000 0.049 7.986 

cons -0.004 0.000 0.069 6.378 0.005 -0.001 0.068 8.074 

CQR-Q90 

x1 -0.011 0.000 0.091 10.490 0.040 -0.005 0.095 10.556 

x2 1.205 0.001 0.074 11.240 1.190 0.004 0.077 11.882 

cons 2.376 0.000 0.102 10.343 2.255 -0.011 0.107 10.434 

UQR-Q10 

x1 2.071 -0.022 0.142 16.525 1.907 0.018 0.129 11.404 

x2 0.613 -0.005 0.066 7.379 0.594 0.006 0.070 4.944 

cons -2.528 0.016 0.139 14.910 -2.327 -0.012 0.134 11.376 

UQR-Q50 

x1 1.023 -0.002 0.077 12.916 1.035 0.009 0.080 15.760 

x2 0.941 -0.003 0.057 10.562 0.934 0.001 0.055 12.713 

cons 0.111 0.003 0.079 11.629 0.107 -0.004 0.076 13.627 

UQR-Q90 

x1 0.042 0.000 0.091 9.811 0.100 -0.006 0.098 10.405 

x2 1.470 0.005 0.101 18.028 1.469 0.004 0.116 20.676 

cons 2.267 -0.001 0.108 11.837 2.158 -0.010 0.118 12.544 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.843 -0.330 0.331 80.730 2.093 -0.265 0.277 58.716 

x2 0.838 -0.123 0.127 33.472 0.783 -0.052 0.086 24.910 

cons -1.988 0.481 0.481 91.788 -2.563 0.274 0.298 63.838 

CQR-Q50 

x1 1.160 -0.021 0.062 9.472 1.009 0.000 0.074 5.395 

x2 0.971 0.000 0.045 8.170 0.996 0.000 0.058 5.473 

cons -0.379 -0.023 0.067 10.375 -0.002 0.002 0.081 5.567 

CQR-Q90 

x1 -0.047 0.012 0.112 5.447 -0.090 0.010 0.073 11.999 

x2 1.212 0.002 0.089 5.565 1.209 0.000 0.059 11.774 

cons 2.488 0.006 0.124 5.152 2.569 0.039 0.087 11.543 

UQR-Q10 

x1 1.829 -0.201 0.218 29.506 2.461 -0.264 0.311 43.730 

x2 0.687 -0.087 0.107 25.826 0.631 -0.038 0.091 22.042 

cons -2.366 0.190 0.220 34.762 -2.983 0.196 0.247 41.332 

UQR-Q50 

x1 1.169 -0.039 0.079 15.149 0.956 -0.011 0.082 6.445 

x2 0.965 0.004 0.053 13.696 0.921 -0.011 0.065 5.756 

cons -0.218 -0.023 0.071 13.141 0.183 0.006 0.092 6.837 

UQR-Q90 

x1 0.018 0.006 0.095 3.929 0.000 0.004 0.081 16.365 

x2 1.430 0.006 0.120 10.946 1.481 0.012 0.081 21.996 

cons 2.389 -0.002 0.128 6.438 2.313 -0.009 0.088 16.681 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 
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Table A2 Monte Carlo Simulation: N=500, exponential Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝑒𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.643 0.000 0.065 17.224 1.608 0.008 0.071 15.862 

x2 0.749 -0.004 0.060 17.363 0.762 -0.003 0.059 17.541 

cons -1.287 0.004 0.078 16.935 -1.219 0.013 0.081 14.726 

CQR-Q50 

x1 1.001 -0.001 0.048 10.497 0.999 0.000 0.044 14.579 

x2 1.002 0.002 0.039 10.339 1.002 0.005 0.038 14.306 

cons -0.003 -0.001 0.056 10.647 -0.002 -0.006 0.051 14.954 

CQR-Q90 

x1 0.363 0.000 0.069 17.349 0.392 -0.004 0.073 16.621 

x2 1.254 0.004 0.057 16.519 1.238 0.004 0.057 16.803 

cons 1.278 -0.003 0.074 16.502 1.217 -0.015 0.081 16.015 

UQR-Q10 

x1 1.596 0.001 0.110 20.406 1.466 -0.022 0.104 20.321 

x2 0.581 -0.001 0.057 9.942 0.564 -0.006 0.052 9.387 

cons -1.527 0.002 0.126 23.503 -1.388 0.022 0.115 21.728 

UQR-Q50 

x1 1.020 -0.004 0.067 23.466 1.041 0.016 0.067 26.614 

x2 0.870 0.002 0.044 17.169 0.870 0.010 0.044 19.589 

cons 0.143 -0.002 0.062 18.832 0.125 -0.020 0.063 20.646 

UQR-Q90 

x1 0.424 -0.002 0.057 8.705 0.436 0.006 0.057 6.172 

x2 1.598 -0.005 0.107 40.036 1.604 0.021 0.111 36.694 

cons 1.239 0.006 0.113 26.234 1.206 -0.025 0.118 23.795 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝑒𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.535 0.029 0.056 42.223 1.692 0.011 0.061 25.847 

x2 0.788 -0.018 0.044 40.444 0.728 -0.046 0.063 21.116 

cons -1.071 0.049 0.069 40.039 -1.383 0.011 0.071 27.536 

CQR-Q50 

x1 1.101 -0.022 0.049 13.874 0.997 0.000 0.058 5.218 

x2 0.958 0.010 0.037 13.895 0.998 -0.006 0.047 5.024 

cons -0.202 -0.055 0.068 14.043 0.003 0.008 0.066 5.155 

CQR-Q90 

x1 0.329 0.003 0.085 6.245 0.307 -0.011 0.058 21.818 

x2 1.261 0.006 0.070 5.772 1.271 0.014 0.048 20.132 

cons 1.346 0.015 0.095 6.053 1.385 0.037 0.070 21.289 

UQR-Q10 

x1 1.288 -0.054 0.084 20.882 1.724 0.103 0.124 8.051 

x2 0.654 0.011 0.049 14.901 0.671 0.073 0.091 4.870 

cons -1.427 0.027 0.097 28.814 -1.836 -0.175 0.197 15.846 

UQR-Q50 

x1 1.118 -0.038 0.074 27.610 0.928 -0.072 0.091 17.477 

x2 0.870 0.027 0.050 21.249 0.846 -0.043 0.059 13.263 

cons 0.003 -0.055 0.074 21.657 0.234 0.076 0.094 16.551 

UQR-Q90 

x1 0.373 0.016 0.067 1.116 0.421 -0.005 0.055 13.190 

x2 1.572 0.053 0.130 25.284 1.606 -0.031 0.108 47.061 

cons 1.325 -0.049 0.133 13.514 1.241 0.032 0.112 30.753 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

Table A3 Monte Carlo Simulation: N=500, Varying coefficient structure 
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𝑦 = 𝑥𝛽(𝑡) 

Type 1 Type 2 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 -1.133 -0.002 0.090 10.978 -0.078 -0.010 0.084 13.873 

x2 -0.036 -0.008 0.079 11.914 -0.078 -0.009 0.077 14.626 

cons 0.359 0.009 0.086 16.881 -0.094 0.041 0.087 15.181 

CQR-Q50 

x1 0.401 0.001 0.060 6.352 0.852 0.009 0.071 5.172 

x2 0.598 0.000 0.049 5.893 0.848 0.004 0.059 4.186 

cons 1.002 -0.001 0.054 7.040 0.847 -0.028 0.070 5.117 

CQR-Q90 

x1 1.933 -0.001 0.089 10.035 2.296 -0.001 0.133 4.750 

x2 1.234 0.005 0.072 9.891 2.276 0.010 0.152 6.726 

cons 1.649 -0.004 0.076 13.577 2.305 0.001 0.151 8.629 

UQR-Q10 

x1 -1.183 -0.003 0.108 15.229 -0.085 -0.013 0.080 16.586 

x2 -0.045 -0.003 0.057 7.473 -0.077 -0.014 0.059 14.851 

cons 0.471 0.005 0.071 6.551 -0.077 0.053 0.091 15.220 

UQR-Q50 

x1 0.419 0.000 0.066 12.220 0.914 0.005 0.053 3.745 

x2 0.542 0.003 0.050 10.874 0.746 0.003 0.040 3.049 

cons 0.892 -0.004 0.069 11.825 0.742 -0.015 0.054 3.150 

UQR-Q90 

x1 1.953 -0.003 0.135 12.268 2.215 0.000 0.163 4.969 

x2 1.291 -0.002 0.112 13.027 2.305 0.003 0.152 7.560 

cons 1.800 0.004 0.139 11.212 2.517 0.005 0.174 4.880 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

 

  



 

32 

 

Table A4. Monte Carlo Simulation: N=2000, Linear Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 2.012 -0.001 0.070 22.780 1.956 0.032 0.073 14.003 

x2 0.797 0.000 0.043 14.959 0.813 0.007 0.045 12.110 

cons -2.379 0.002 0.090 28.314 -2.253 -0.025 0.090 18.776 

CQR-Q50 

x1 1.000 -0.001 0.031 7.565 1.000 0.001 0.030 9.549 

x2 1.000 0.000 0.025 7.578 1.001 0.001 0.024 9.869 

cons -0.001 0.000 0.036 7.606 -0.001 -0.002 0.033 9.613 

CQR-Q90 

x1 -0.013 -0.001 0.044 9.852 0.040 -0.008 0.048 9.173 

x2 1.204 0.001 0.038 10.723 1.193 0.002 0.039 9.938 

cons 2.380 0.002 0.052 9.576 2.251 -0.008 0.054 8.823 

UQR-Q10 

x1 2.102 -0.004 0.077 17.398 1.928 0.018 0.071 12.349 

x2 0.611 -0.001 0.033 5.883 0.615 0.010 0.038 4.991 

cons -2.537 0.004 0.068 12.837 -2.357 -0.014 0.072 10.949 

UQR-Q50 

x1 0.997 -0.002 0.040 13.649 1.014 0.010 0.040 16.228 

x2 0.918 0.000 0.028 11.177 0.914 0.003 0.027 13.060 

cons 0.144 0.001 0.040 12.948 0.134 -0.006 0.039 14.705 

UQR-Q90 

x1 0.051 -0.001 0.048 10.379 0.104 -0.006 0.055 11.012 

x2 1.478 0.001 0.055 20.333 1.502 0.002 0.062 21.991 

cons 2.249 0.000 0.061 14.151 2.126 -0.008 0.067 14.438 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.846 -0.315 0.315 102.805 2.097 -0.254 0.254 79.038 

x2 0.831 -0.120 0.120 41.393 0.785 -0.053 0.059 34.323 

cons -1.990 0.462 0.462 115.185 -2.576 0.261 0.262 85.905 

CQR-Q50 

x1 1.162 -0.020 0.033 9.024 0.997 -0.001 0.037 3.781 

x2 0.967 0.000 0.022 8.560 1.001 -0.001 0.030 3.536 

cons -0.379 -0.024 0.036 8.650 0.002 0.002 0.041 3.955 

CQR-Q90 

x1 -0.059 0.011 0.056 4.530 -0.099 0.010 0.037 17.994 

x2 1.207 0.003 0.045 4.106 1.217 0.000 0.029 17.804 

cons 2.497 0.003 0.061 4.204 2.577 0.042 0.053 17.678 

UQR-Q10 

x1 1.849 -0.168 0.170 28.163 2.605 -0.208 0.233 50.409 

x2 0.683 -0.073 0.076 24.098 0.672 -0.018 0.047 17.640 

cons -2.374 0.157 0.161 31.806 -3.104 0.135 0.165 41.542 

UQR-Q50 

x1 1.141 -0.046 0.054 17.116 0.941 -0.013 0.043 6.530 

x2 0.932 0.000 0.027 15.086 0.924 -0.007 0.034 6.317 

cons -0.174 -0.017 0.037 14.281 0.190 0.003 0.047 7.732 

UQR-Q90 

x1 0.010 0.005 0.047 3.471 -0.006 0.003 0.042 16.880 

x2 1.463 -0.001 0.067 12.651 1.474 0.011 0.045 25.062 

cons 2.362 0.003 0.072 8.312 2.326 -0.008 0.048 19.042 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 
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Table A5 Monte Carlo Simulation: N=2000, exponential Heteroskedasticity 

𝑦 = 𝑥𝛽 + 𝑢 𝑒𝛾𝑥 
𝑢~normal 𝑢~logistic 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.639 0.000 0.033 16.242 1.603 0.009 0.037 13.033 

x2 0.744 -0.004 0.028 16.854 0.758 -0.002 0.030 14.981 

cons -1.280 0.004 0.037 15.255 -1.210 0.013 0.042 11.389 

CQR-Q50 

x1 0.999 -0.001 0.024 12.710 1.001 0.000 0.022 16.966 

x2 1.000 0.000 0.020 12.194 0.999 0.003 0.019 17.030 

cons 0.000 0.001 0.028 12.898 0.000 -0.004 0.026 16.930 

CQR-Q90 

x1 0.363 0.002 0.034 16.461 0.397 -0.006 0.037 14.246 

x2 1.256 0.002 0.028 16.068 1.241 0.002 0.029 14.168 

cons 1.279 -0.002 0.038 15.993 1.211 -0.016 0.042 13.960 

UQR-Q10 

x1 1.621 0.001 0.070 31.593 1.485 -0.022 0.068 31.361 

x2 0.587 0.000 0.033 12.283 0.570 -0.006 0.029 11.513 

cons -1.542 0.001 0.076 32.641 -1.401 0.020 0.070 30.055 

UQR-Q50 

x1 0.991 -0.002 0.035 25.811 1.014 0.016 0.036 28.899 

x2 0.843 0.001 0.024 19.445 0.842 0.010 0.024 21.943 

cons 0.184 -0.002 0.035 22.803 0.167 -0.019 0.037 24.307 

UQR-Q90 

x1 0.433 0.000 0.027 7.175 0.455 0.007 0.026 4.576 

x2 1.630 0.001 0.068 55.317 1.632 0.027 0.071 51.402 

cons 1.201 -0.001 0.073 37.912 1.167 -0.030 0.077 35.785 

𝑦 = 𝑥𝛽 + 𝑢 ∗ 𝛾𝑥 
𝑢~Chi2 𝑢~uniform 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 1.536 0.030 0.035 54.139 1.693 0.014 0.031 39.009 

x2 0.786 -0.017 0.025 51.237 0.726 -0.044 0.046 33.306 

cons -1.072 0.048 0.051 50.328 -1.386 0.005 0.034 42.038 

CQR-Q50 

x1 1.103 -0.024 0.030 15.691 1.001 0.001 0.028 3.822 

x2 0.957 0.008 0.019 16.548 1.001 -0.007 0.024 3.272 

cons -0.203 -0.053 0.054 16.133 -0.002 0.008 0.032 3.817 

CQR-Q90 

x1 0.332 0.003 0.043 4.651 0.310 -0.014 0.031 33.775 

x2 1.265 0.003 0.034 2.820 1.276 0.012 0.025 31.715 

cons 1.341 0.013 0.047 4.467 1.383 0.040 0.047 33.290 

UQR-Q10 

x1 1.266 -0.081 0.085 32.567 1.735 0.141 0.142 10.636 

x2 0.643 -0.002 0.028 21.053 0.675 0.091 0.091 3.700 

cons -1.406 0.052 0.072 41.204 -1.850 -0.216 0.216 18.086 

UQR-Q50 

x1 1.082 -0.036 0.046 29.848 0.916 -0.070 0.072 19.639 

x2 0.844 0.030 0.034 24.071 0.831 -0.041 0.043 15.592 

cons 0.046 -0.059 0.062 26.353 0.256 0.074 0.077 20.025 

UQR-Q90 

x1 0.388 0.023 0.038 -0.905 0.437 -0.012 0.029 13.537 

x2 1.606 0.081 0.103 34.782 1.647 -0.047 0.078 68.154 

cons 1.282 -0.083 0.106 19.940 1.194 0.049 0.082 47.202 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

Table A6 Monte Carlo Simulation: N=2000, Varying coefficient structure 
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𝑦 = 𝑥𝛽(𝑡) 

Type 1 Type 2 

E(𝛽̂𝑓) Bias MAE  StErr Ratio E(𝛽̂𝑓) Bias MAE  StErr Ratio 

CQR-Q10 

x1 -1.131 -0.003 0.044 10.117 -0.085 -0.010 0.044 16.671 

x2 -0.041 -0.010 0.039 11.638 -0.090 -0.011 0.040 15.811 

cons 0.358 0.012 0.045 18.744 -0.087 0.043 0.054 18.407 

CQR-Q50 

x1 0.400 0.000 0.030 7.158 0.849 0.009 0.036 5.888 

x2 0.599 0.002 0.025 7.239 0.845 0.006 0.029 4.707 

cons 0.999 -0.004 0.028 9.754 0.850 -0.030 0.041 6.545 

CQR-Q90 

x1 1.937 0.000 0.044 9.752 2.294 0.007 0.068 4.131 

x2 1.240 0.006 0.036 9.402 2.293 0.015 0.081 4.712 

cons 1.640 -0.005 0.037 13.364 2.291 -0.006 0.077 6.313 

UQR-Q10 

x1 -1.219 0.000 0.066 19.397 -0.089 -0.017 0.044 17.878 

x2 -0.049 -0.002 0.030 6.867 -0.079 -0.014 0.032 15.935 

cons 0.492 0.003 0.039 6.731 -0.076 0.057 0.065 16.610 

UQR-Q50 

x1 0.410 0.003 0.031 12.352 0.897 0.007 0.025 2.706 

x2 0.528 0.006 0.025 11.565 0.733 0.006 0.019 2.229 

cons 0.908 -0.010 0.037 12.949 0.765 -0.016 0.029 2.666 

UQR-Q90 

x1 1.999 -0.002 0.087 18.978 2.249 0.002 0.082 5.155 

x2 1.314 -0.002 0.062 15.866 2.348 0.003 0.082 8.132 

cons 1.747 0.003 0.093 19.129 2.458 0.002 0.104 7.188 

Note: Monte Carlo Simulation Results. True coefficients represent the average quantile coefficients based on 

uncensored data. Bias is the average difference of the coefficients using uncensored data and Multiple imputed (MI) 

data. MAE ratio represents the average Mean absolute error (MAE) ratio between MI data and the uncensored data. 

StErr ratio represents the average coefficients standard error ratio between MI data and uncensored data.  CQR: 

Conditional Quantile Regression; UQR: Unconditional Quantile Regression. 

Figure A1 Average Monthly Earnings by Year and Gender: IPW 
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Figure A2 Selected Quantiles and Gini Coefficient across Years: IPW 

 


